Add like
Add dislike
Add to saved papers

Lentinan-Modified Carbon Nanotubes as an Antigen Delivery System Modulate Immune Response in Vitro and in Vivo.

Adjuvants enhance immunogenicity and sustain long-term immune responses. As vital components of vaccines, efficient adjuvants are highly desirable. Recent evidence regarding the potential of carbon nanotubes (CNTs) to act as a support material has suggested that certain properties, such as their unique hollow structure, high specific surface area, and chemical stability, make CNTs desirable for a variety of antigen-delivery applications. Lentinan, a β-1,3-glucohexaose with β-1,6-branches that is extracted from the mushroom Lentinus edodes, is an effective immunostimulatory drug that has been clinically used in Japan and China, and recent studies have proved that specific beta-glucans can bind to various immune receptors. In this research, we covalently attached lentinan to multiwalled carbon nanotubes (MWCNTs) and tested their ability to enhance immune responses as a vaccine delivery system. In vitro study results showed that the nanotube constructs could rapidly enter dendritic cells and carry large amounts of antigen. Moreover, maturation markers were significantly upregulated versus the control. Thus, lentinan-modified multiwalled carbon nanotubes (L-MWCNTs) were regarded as an effective intracellular antigen depot and a catalyzer that could induce phenotypic and functional maturation of dendritic cells. Furthermore, compared with L-MWCNTs (35 μg/mL), a corresponding concentration of carboxylic carbon nanotubes (C-MWCNTs, 31.8 μg/mL) and an equivalent concentration of lentinan (3.2 μg/mL) did not remarkably influence the immune reaction in vitro or in vivo. Hence, we can hypothesize that the capability of L-MWCNTs was a consequence of the increased intracellular quantity of lentinan grafted onto the nanotubes. Overall, our studies demonstrated that L-MWCNTs significantly increased antigen accumulation in the cells and potentiated cellular and humoral immunity. In conclusion, L-MWCNTs constitute a potential vaccine delivery system to enhance immunogenicity for therapeutic purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app