Add like
Add dislike
Add to saved papers

Toxicological Effects Induced by Silver Nanoparticles in Zebra Fish (Danio Rerio) and in the Bacteria Communities Living at Their Surface.

The antimicrobial activity of silver nanoparticles (AgNP) makes them useful in a wide range of products although their environmental impact is still uncertain. The main goal of this study was to evaluate short-term effects induced by AgNP on gills oxidative status and bacterial communities living at the skin mucus of zebrafish. Both the number of bacteria colony forming units and bacteria growth obtained from skin mucus were lower in all concentrations tested (25, 50 and 100 µg nAg/L). Besides, AgNP exposure caused a significant decrease in bacteria growth in zebrafish exposed to 100 µg nAg/L. AgNP accumulated in zebrafish gills at both highest concentrations tested, but this accumulation did not appear to result in oxidative stress. Overall the results indicated toxicological effects of AgNP on bacteria communities living at the zebrafish mucus surface. Although silver accumulation was verified in gills, no evidence of toxicity in terms of oxidative stress was found.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app