Add like
Add dislike
Add to saved papers

MnO nanoparticles embedded in a carbon matrix as high performance lithium-ion battery anodes: preparation, microstructure and electrochemistry.

Nano-sized MnO intimately embedded in a porous carbon matrix has been synthesized by a facile method in which the manganese-salts/glycerol sol was used as the precursor. The glycerol plays roles of the chelating agent, the carbon source and the solvent. The X-ray diffraction (XRD) and Raman results indicate that the carbon layer may have an obvious effect on the microstructure of MnO. The first-principles density functional theory (DFT) calculations further reveal a considerable charge transfer from MnO to the carbon, leading to a decrease of lattice parameters of MnO and the bond length of Mn-O in the MnO/C composite. The modified microstructure could improve electrochemical performance and meanwhile may explain the phenomenon of exceeding the theoretical capacity. The prepared MnO/C nanocomposite as an anode material displays superior Li-battery performance with a large reversible capacity, excellent cyclic performance and good rate capability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app