Add like
Add dislike
Add to saved papers

Prediction of genetic risk factors of atherosclerosis using various bioinformatic tools.

The aim of this study was to identify potential markers of atherosclerosis development in familial hypercholesterolemia (FH) patients. GSE13985 microarray data, generated using blood samples from 5 FH patients and 5 matched controls, was downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) between FH and controls were identified and a protein-protein interaction (PPI) network was constructed. Module and hub proteins were screened in this network. The module genes were subjected to a gene ontology (GO) analysis, and a Kyoto Encyclopedia of Genes and Genomes enrichment analysis was also performed. A total of 394 genes, including 125 up- and 269 down-regulated genes, were differentially expressed. Ribosomal proteins L9 (RPL9), L35 (RPL35), and S7 (RPS7) were designated as hub nodes in the PPI network. The DEGs were found to be significantly enriched in ribosomal and oxidative phosphorylation pathways. Ribosomal protein genes were found to be involved in the ribosomal pathway. The cytochrome-c oxidase (COX) genes COX subunit VIIa polypeptide 2 (COX7A2), COX subunit VIIb (COX7B), COX subunit VIIc (COX7C), and COX subunit VIc (COX6C) were enriched in the oxidative phosphorylation pathway. Module analysis and GO enrichment analysis identified ribosomal proteins as important regulators of FH. Ribosomal and oxidative phosphorylation pathways may be closely associated with atherosclerosis development. Ribosomal protein genes and cytochrome-coxidase genes may be potential therapeutic targets for atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app