Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dual Action Enhancement of Gold Nanoparticle Radiosensitization by Pentamidine in Triple Negative Breast Cancer.

Triple negative breast cancer (TNBC) is an aggressive disease with a high risk of recurrence and death. Here, we present a novel strategy to enhance the radiotherapy of TNBC by combining gold nanoparticles (AuNPs) with pentamidine, a clinically approved anti-parasitic agent with anti-cancer properties. The radiosensitization effects of PEG-stabilized AuNPs (PEG-AuNPs) in combination with pentamidine were evaluated in two human TNBC cell lines (MDA-MB-231 and MDA-MB-436). Our results showed that PEG-AuNPs alone sensitized both cell lines to radiation, achieving dose enhancement factors of 1.26 and 1.15 in MDA-MB-231 and MDA-MB-436, respectively. In combination with pentamidine, the greatest dose enhancement was achieved in MDA-MB-231 after 24 h of treatment with 500 μM PEG-AuNPs and 20 μM pentamidine (dose enhancement factor of 1.55). Based on the in vitro data, it is projected that this combination would result in a 10 log increase in cell kill compared to radiation alone in a clinical setting, where 50 Gy is administered to breast cancer patients in 25 fractions over 5 weeks. Studies to elucidate the underlying mechanism of radiosensitization revealed that the adsorption of pentamidine onto the PEG-AuNP surface increased the cellular uptake of gold compared to PEG-AuNPs alone. In addition, the combination resulted in a significantly greater number of residual DNA double-strand breaks compared to that of either agent alone after a 2 Gy dose. Taken together, the dual action of pentamidine on the physical and biological pathways of radiosensitization by PEG-AuNPs results in superior radiotherapeutic effects of the combined treatment group in MDA-MB-231.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app