Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of Oyster Voltage-Dependent Anion Channel 2 (VDAC2) Suggests Its Involvement in Apoptosis and Host Defense.

Genomic and transcriptomic studies have revealed a sophisticated and powerful apoptosis regulation network in oyster, highlighting its adaptation to sessile life in a highly stressful intertidal environment. However, the functional molecular basis of apoptosis remains largely unexplored in oysters. In this study, we focused on a representative apoptotic gene encoding voltage-dependent anion channel 2 (VDAC2), a porin that abounds at the mitochondrial outer membrane. This is the first report on the identification and characterization of a VDAC gene in the Pacific oyster, Crassostrea gigas (CgVDAC2). The full length of CgVDAC2 was 1,738 bp with an open reading frame of 843 bp that encoded a protein of 281 amino acids. A four-element eukaryotic porin signature motif, a conserved ATP binding motif, and a VKAKV-like sequence were identified in the predicted CgVDAC2. Expression pattern analysis in different tissues and developmental stages as well as upon infection by ostreid herpesvirus 1 revealed the energy supply-related and immunity-related expression of CgVDAC2. CgVDAC2 was co-localized with mitochondria when it was transiently transfected into HeLa cells. Overexpression of CgVDAC2 in HEK293T cells suppressed the UV irradiation-induced apoptosis by inhibiting the pro-apoptotic function of CgBak. RNA interference induced reduction in CgVDAC2 expression showed a promoted apoptosis level upon UV light irradiation in hemocytes. The yeast two-hybrid system and co-immunoprecipitation assay indicated a direct interaction between CgVDAC2 and the pro-apoptotic protein CgBak. This study revealed the function of VDAC2 in oyster and provided new insights into its involvement in apoptosis modulation and host defense in mollusks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app