Journal Article
Randomized Controlled Trial
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Dose-response effects of marine omega-3 fatty acids on apolipoproteins, apolipoprotein-defined lipoprotein subclasses, and Lp-PLA2 in individuals with moderate hypertriglyceridemia.

BACKGROUND: Apolipoprotein (apo) distribution and lipoprotein (Lp)-associated markers of inflammation, such as lipoprotein-associated phospholipase A2 (Lp-PLA2), influence the atherogenicity of circulating lipids and lipoproteins. Little evidence exists regarding the dose-response effects of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on apos, apo-defined Lps, and Lp-PLA2.

OBJECTIVE: The purpose of this study was to compare the effects of 0, 0.85, and 3.4 g/d of EPA + DHA on Lp-PLA2 mass and activity in individuals with moderate hypertriglyceridemia. We also measured effects on concentrations of apoAI, apoAII, apoB, apoC, apoD, and apoE-defined Lp subclasses.

METHODS: The study was a randomized, doubleblind, crossover design with 8-week treatment periods and 6-week washout periods. During the 3 treatment periods, subjects (n = 25) received 0 g/d EPA + DHA, 0.85 g/d EPA + DHA (low dose), and 3.4 g/d EPA + DHA (high dose) in random order.

RESULTS: apoB and apoC-III were significantly decreased by the high dose relative to placebo and low dose (P < .01), as was very low-density lipoprotein cholesterol (P < .005). The low dose had no effect on Lp outcomes compared with placebo. The high- and low-dose effects differed significantly for heparin-precipitated apoC-III, LpB, LpA-I, and apoB/apoA-I ratio (P < .05). There was a trend for a decreased Lp-PLA2 mass with the high dose (P = .1).

CONCLUSION: The effects of 3.4 g/d EPA + DHA on apoB and apoC-III may reduce atherosclerotic plaque progression in individuals with elevated triglycerides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app