Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Monitoring bone strontium intake in osteoporotic females self-supplementing with strontium citrate with a novel in-vivo X-ray fluorescence based diagnostic tool.

Bone 2014 April
Ten female volunteers were recruited as part of the Ryerson and McMaster University Strontium (Sr) in Bone Research Study to have their bone Sr levels measured as they self-supplemented with Sr supplements of their choice. Of the ten volunteers, nine were suffering from osteopenia and/or osteoporosis. Non-invasive bone Sr measurements were performed using an in vivo x-ray fluorescence (IVXRF) I-125 based system. Thirty minute measurements were taken at the finger and ankle, representing primarily cortical and trabecular bone, respectively. For analysis, the 14.2keV Sr K-alpha peak normalized to the Coherent peak at 35.5keV was used. Baseline readings, representing natural bone Sr levels were acquired since all volunteers had no previous intake of Sr based supplements or medications. Once Sr supplements were started, a 24h reading was taken, followed by frequent measurements ranging from weekly, biweekly to monthly. The longest volunteer participation was 1535days. The mean baseline Sr signal observed for the group was 0.42±0.13 and 0.39±0.07 for the finger and ankle, respectively. After 24h, the mean Sr signal rose to 1.43±1.12 and 1.17±0.51, for the finger and ankle, respectively, representing a statistically significant increase (p=0.0043 & p=0.000613). Bone Sr levels continued to increase throughout the length of the study. However the Sr signal varied widely between the individuals such that after three years, the highest Sr signal observed was 28.15±0.86 for the finger and 26.47±1.22 for the ankle in one volunteer compared to 3.15±0.15 and 4.46±0.36, for the finger and ankle, respectively in another. Furthermore, while it was previously reported by our group, that finger bone Sr levels may plateau within two years, these results suggest otherwise, indicating that bone Sr levels will continue to rise at both bone sites even after 4years of Sr intake.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app