Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP).

Microbial Ecology 2003 October
The diversity of prokaryotes inhabiting solar saltern ponds was determined by thermal melting and reassociation of community DNA. These measurements were compared with fingerprinting techniques such as terminal restriction fragment length polymorphisms (T-RFLP) analysis, denaturant gradient gel electrophoresis (DGGE), and cloning and sequencing approaches. Three ponds with salinities of 22, 32, and 37% (NaCl saturation) were studied. The combination of independent molecular techniques to estimate the total genetic diversity provided a realistic assessment to reveal the microbial diversity in these environments. The changes in the prokaryotic communities at different salinity (22, 32, and 37% salt) were significant and revealed that the total genetic diversity increased from 22% to 32% salinity. At 37% salinity the diversity was reduced again to nearly half that at 22% salinity. Our results revealed that the community "genome" had a DNA complexity that was 7 (in 22% salinity pond), 13 (in 32% salinity pond), and 4 (in 37% salinity pond) times the complexity of an Escherichia coli genome. The base composition profiles showed two abundant populations, which changed in relative amount between the three ponds. They indicated an uneven taxon distribution at 22% and 37% salinity and a more even distribution at 32% salinity. The results indicated a large predominating population at 37% salinity, which might correspond to the abundance of square archaea (SPhT) observed by transmission electron microscopy (TEM) and also indicated by the same T-RFLP fragment as the SPhT. The SPhT phylotype has also been reported to be the most frequently retrieved phylotype from this environment by culture independent techniques. In addition, two different operational taxonomic units (OTU) were detected at 37% salinity based on PCR with bacterial specific primers and T-RFLP. One of these predominant phylotypes is the extreme halophilic bacterium belonging to the bacteroidetes group, Salinibacter ruber.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app