In Vitro
Journal Article
Add like
Add dislike
Add to saved papers

Glucose uptake and metabolism in the Trichinella spiralis nurse cell.

Isolated Trichinella spiralis nurse cells transport a significantly greater amount of glucose/mg of protein than the normal skeletal muscle cell line (L6). V(max) and K(m) estimations revealed that nurse cells have a much higher saturation point than L6 cells for glucose. The effects of numerous physiological conditions (Na(+) concentration, pH, and temperature) on nurse cell glucose uptake were investigated. It was determined that sodium concentration had no effect on glucose uptake. Low (<6.5) and high (>7.3) pH and low (5 degrees C) temperatures significantly effected glucose uptake. The two hormones, insulin and epinephrine, appeared to have little, if any, influence on the rate of glucose uptake by nurse cells. Glucose uptake was inhibited in the presence of 6-carbon carbohydrates. The H(+)/glucose symport inhibitors, dicyclohexylcarbodiimide (DCCD) and Carbonyl cyanide 4-trifluoromethoxyphenlhydrazone (FCCP), and the facilitated diffusion inhibitor phloretin also inhibited glucose uptake. Oubain, a Na(+)/glucose symport inhibitor, did not inhibit glucose uptake. These data, in conjunction with Western blot analyses, revealed that the transport of glucose occurs via H(+)/glucose symport and facilitated diffusion, perhaps through the glucose transport proteins GLUT 1 and/or 4. It was also demonstrated that nurse cells are capable of synthesising glycogen. It appears that glycogen is in a constant state of flux and physiological conditions, such as glucose concentration, significantly influence the synthesis of this macromolecule. We conclude that these results are consistent with the hypothesis that nurse cells, at least maintained in vitro, are metabolically highly active but show significant divergence from normal muscle cells in several fundamental aspects of sugar metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app