In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

No evidence for the in vivo activity of aromatase-inhibiting flavonoids.

Measurements of the aromatase-inhibiting and antioxidative capacities of flavonoids in vitro showed that slight changes in flavonoid structure may result in marked changes in biological activity. Several flavonoids such as 7-hydroxyflavone and chrysin (5,7-dihydroxyflavone) were shown to inhibit the formation of 3H-17beta-estradiol from 3H-androstenedione (IC(50)<1.0 microM) in human choriocarcinoma JEG-3 cells and in human embryonic kidney cells HEK 293 transfected with human aromatase gene (Arom+HEK 293). Flavone and quercetin (3,3',4',5,7-pentahydroxyflavone) showed no inhibition (IC(50)>100 microM). None of the requirements for optimal antioxidative capacity (2,3-double bond with 4'-hydroxy group, 3-hydroxyl group, 5,7-dihydroxy structure and the orthodihydroxy structure in the B-ring) is relevant for the maximum inhibition of aromatase by flavonoids. After oral administration to immature rats at a dose of 50 mg/kg body weight, which considerably exceeds amounts found in daily human diets, neither aromatase-inhibiting nonestrogenic flavonoids, such as chrysin, nor estrogenic flavonoids, such as naringenin and apigenin, induced uterine growth or reduced estrogen- or androgen-induced uterine growth. The inability of flavonoids to inhibit aromatase and, consequently, uterine growth in short-term tests may be due to their relatively poor absorption and/or bioavailability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app