Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of the human KIF13A gene homologous to Drosophila kinesin-73 and candidate for schizophrenia.

Genomics 2001 May 16
Several studies have reported significant linkage for schizophrenia on 6p23, with a maximum lod score between D6S274 and D6S285. In this paper, we present a new human kinesin gene localized in this 2-cM interval. This gene, termed KIF13A, belongs to the unc-104/KIF1A kinesin subfamily and represents the orthologue of Drosophila kinesin-73. Several alternative transcripts are differentially expressed in human tissues, probably reflecting differences in cargo binding and transport of corresponding proteins. During early mouse development, its homologue (Kif13A) is expressed essentially in the central nervous system. In Caenorhabditis elegans, the unc-104 gene is involved in axonal anterograde transport, and null mutants present several behavioral defects. The putative function and genomic localization of KIF13A make this gene an interesting candidate for genetic predisposition to schizophrenia. We provide sequences of 20 single-nucleotide polymorphisms localized within KIF13A to test for association studies between this gene and schizophrenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app