Add like
Add dislike
Add to saved papers

How xylitol, gluten, and lactose change human gut microbiota Escherichia coli and Lactobacillus rhamnosus GG biofilm.

Nutrition 2024 April 3
OBJECTIVE: The human gut microbiota is composed of many viruses, bacteria, and fungi. Escherichia coli representatives are facultative anaerobic bacteria in the colon that play a crucial role in the metabolism of lactose, vitamin synthesis, and immune system modulation. E. coli forms a biofilm on the epithelial cell surface of the intestine that can be modified by diet compounds, i.e., gluten, xylitol, lactose, and probiotics.

METHODS: In the present study, the impact of probiotic-derived Lactobacillus rhamnosus GG strain on non-pathogenic E. coli biofilm was examined. The mono- and multispecies biofilm was also treated with gluten, xylitol, and lactose. We used 96-well plates to obtain biofilm growth. Biofilm was stained using crystal violet. To evaluate the type of interaction in mono- and multispecies biofilm, a new formula was introduced: biofilm interaction ratio index (BIRI). To describe the impact of nutrients on biofilm formation, the biofilm formation impact ratio (BFIR) was calculated.

RESULTS: The biofilms formed by both examined species are stronger than in monocultures. All the BIRI values were above 3.0. It was found that the monospecies biofilm of L. rhamnosus is strongly inhibited by gluten (84.5%) and the monospecies biofilm of E. coli by xylitol (85.5%). The mixed biofilm is inhibited by lactose (78.8%) and gluten (90.6%).

CONCLUSION: The relations between bacteria in the mixed biofilm led to changes in biofilm formation by E. coli and L. rhamnosus GG. Probiotics might be helpful in rebuilding the gut microbiota after broad spectrum antibiotic therapy, but only if gluten and lactose are excluded from diet.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app