Add like
Add dislike
Add to saved papers

C1-2 hypermobility and its impact on the spinal cord: a finite element analysis.

OBJECTIVE: The authors present a finite element analysis (FEA) evaluating the mechanical impact of C1-2 hypermobility on the spinal cord.

METHODS: The Code_Aster program was used to perform an FEA to determine the mechanical impact of C1-2 hypermobility on the spinal cord. Normative values of Young's modulus were applied to the various components of the model, including bone, ligaments, and gray and white matter. Two models were created: 25° and 50° of C1-on-C2 rotation, and 2.5 and 5 mm of C1-on-C2 lateral translation. Maximum von Mises stress (VMS) throughout the cervicomedullary junction was calculated and analyzed.

RESULTS: The FEA model of 2.5 mm lateral translation of C1 on C2 revealed maximum VMS for gray and white matter of 0.041 and 0.097 MPa, respectively. In the 5-mm translation model, the maximum VMS for gray and white matter was 0.069 and 0.162 MPa. The FEA model of 25° of C1-on-C2 rotation revealed maximum VMS for gray and white matter of 0.052 and 0.123 MPa. In the 50° rotation model, the maximum VMS for gray and white matter was 0.113 and 0.264 MPa.

CONCLUSIONS: This FEA revealed significant spinal cord stress during pathological rotation (50°) and lateral translation (5 mm) consistent with values found during severe spinal cord compression and in patients with myelopathy. While this finite element model requires oversimplification of the atlantoaxial joint, the study provides biomechanical evidence that hypermobility within the C1-2 joint leads to pathological spinal cord stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app