Add like
Add dislike
Add to saved papers

-A machine learning model to predict surgical site infection after surgery of lower extremity fractures.

PURPOSE: This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures.

METHODS: A machine learning analysis was conducted on a dataset comprising 1,579 patients who underwent surgical fixation for lower extremity fractures to create a predictive model for risk stratification of postoperative surgical site infection. We evaluated different clinical and demographic variables to train four machine learning models (neural networks, boosted generalised linear model, naïve bayes, and penalised discriminant analysis). Performance was measured by the area under the curve score, Youdon's index and Brier score. A multivariate adaptive regression splines (MARS) was used to optimise predictor selection.

RESULTS: The final model consisted of five predictors. (1) Operating room time, (2) ankle region, (3) open injury, (4) body mass index, and (5) age. The best-performing machine learning algorithm demonstrated a promising predictive performance, with an area under the ROC curve, Youdon's index, and Brier score of 77.8%, 62.5%, and 5.1%-5.6%, respectively.

CONCLUSION: The proposed predictive model not only assists surgeons in determining high-risk factors for surgical site infections but also empowers patients to closely monitor these factors and take proactive measures to prevent complications. Furthermore, by considering the identified predictors, this model can serve as a reference for implementing preventive measures and reducing postoperative complications, ultimately enhancing patient outcomes. However, further investigations involving larger datasets and external validations are required to confirm the reliability and applicability of our model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app