Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Prognostic and immunotherapeutic implications of bilirubin metabolism-associated genes in lung adenocarcinoma.

Lung adenocarcinoma (LUAD) is a major subtype of non-small-cell lung cancer and accompanies high mortality rates. While the role of bilirubin metabolism in cancer is recognized, its specific impact on LUAD and patient response to immunotherapy needs to be elucidated. This study aimed to develop a prognostic signature of bilirubin metabolism-associated genes (BMAGs) to predict outcomes and efficacy of immunotherapy in LUAD. We analysed gene expression data from The Cancer Genome Atlas (TCGA) to identify survival-related BMAGs and construct a prognostic model in LUAD. The prognostic efficacy of our model was corroborated by employing TCGA-LUAD and five Gene Expression Omnibus datasets, effectively stratifying patients into risk-defined cohorts with marked disparities in survival. The BMAG signature was indeed an independent prognostic determinant, outperforming established clinical parameters. The low-risk group exhibited a more favourable response to immunotherapy, highlighted by increased immune checkpoint expression and immune cell infiltration. Further, somatic mutation profiling differentiated the molecular landscapes of the risk categories. Our screening further identified potential drug candidates preferentially targeting the high-risk group. Our analysis of critical BMAGs showed the tumour-suppressive role of FBP1, highlighting its suppression in LUAD and its inhibitory effects on tumour proliferation, migration and invasion, in addition to its involvement in cell cycle and apoptosis regulation. These findings introduce a potent BMAG-based prognostic indicator and offer valuable insights for prognostication and tailored immunotherapy in LUAD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app