Add like
Add dislike
Add to saved papers

Enhancing Major Depressive Disorder Diagnosis with Dynamic-Static Fusion Graph Neural Networks.

Major Depressive Disorder (MDD) is a debilitating, complex mental condition with unclear mechanisms hindering diagnostic progress. Research links MDD to abnormal brain connectivity using functional magnetic resonance imaging (fMRI). Yet, existing fMRI-based MDD models suffer from limitations, including neglecting dynamic network traits, lacking interpretability, and struggling with small datasets. We present DSFGNN, a novel graph neural network framework addressing these issues for improved MDD diagnosis. DSFGNN employs a graph isomorphism encoder to model static and dynamic brain networks, achieving effective fusion of temporal and spatial information through a spatiotemporal attention mechanism, thereby enhancing interpretability. Furthermore, we incorporate a causal disentangling module and orthogonal regularization module to augment the model's expressiveness. We evaluate DSFGNN on the Rest-meta-MDD dataset, yielding superior results compared to the best baseline. Besides, extensive ablation studies and interpretability analysis confirm DSFGNN's effectiveness and potential for biomarker discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app