Add like
Add dislike
Add to saved papers

A primal-dual data-driven method for computational optical imaging with a photonic lantern.

PNAS Nexus 2024 April
Optical fibers aim to image in vivo biological processes. In this context, high spatial resolution and stability to fiber movements are key to enable decision-making processes (e.g. for microendoscopy). Recently, a single-pixel imaging technique based on a multicore fiber photonic lantern has been designed, named computational optical imaging using a lantern (COIL). A proximal algorithm based on a sparsity prior, dubbed SARA-COIL, has been further proposed to solve the associated inverse problem, to enable image reconstructions for high resolution COIL microendoscopy. In this work, we develop a data-driven approach for COIL. We replace the sparsity prior in the proximal algorithm by a learned denoiser, leading to a plug-and-play (PnP) algorithm. The resulting PnP method, based on a proximal primal-dual algorithm, enables to solve the Morozov formulation of the inverse problem. We use recent results in learning theory to train a network with desirable Lipschitz properties, and we show that the resulting primal-dual PnP algorithm converges to a solution to a monotone inclusion problem. Our simulations highlight that the proposed data-driven approach improves the reconstruction quality over variational SARA-COIL method on both simulated and real data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app