Add like
Add dislike
Add to saved papers

Microbial mechanisms of C/N/S geochemical cycling during low-water-level sediment remediation in urban rivers.

Low-water-level regulation has been effectively implemented in the restoration of urban river sediments in Guangzhou City, China. Further investigation is needed to understand the microbial mechanisms involved in pollutant degradation in low-water-level environments. This study examined sediment samples from nine rivers, including low-water-level rivers (LW), tidal waterways (TW), and enclosed rivers (ER). Metagenomic high-throughput sequencing and the Diting pipeline were utilized to investigate the microbial mechanisms involved in sediment C/N/S geochemical cycling during low-water-level regulation. The results reveal that the degree of pollution in LW sediment is lower compared to TW and ER sediment. LW sediment exhibits a higher capacity for pollutant degradation and elimination of black, odorous substances due to its stronger microbial methane oxidation, nitrification, denitrification, anammox, and oxidation of sulfide, sulfite, and thiosulfate. Conversely, TW and ER sediment showcase greater microbial methanogenesis, anaerobic fermentation, and sulfide generation abilities, leading to the persistence of black, odorous substances. Factors such as grit and silt content, nitrate, and ammonia concentrations impacted microbial metabolic pathways. Low-water-level regulation improved the micro-environment for functional microbes, facilitating pollutant removal and preventing black odorous substance accumulation. These findings provide insights into the microbial mechanisms underlying low-water-level regulation technology for sediment restoration in urban rivers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app