Add like
Add dislike
Add to saved papers

Data Efficiency, Dimensionality Reduction, and the Generalized Symmetric Information Bottleneck.

Neural Computation 2024 April 18
The symmetric information bottleneck (SIB), an extension of the more familiar information bottleneck, is a dimensionality-reduction technique that simultaneously compresses two random variables to preserve information between their compressed versions. We introduce the generalized symmetric information bottleneck (GSIB), which explores different functional forms of the cost of such simultaneous reduction. We then explore the data set size requirements of such simultaneous compression. We do this by deriving bounds and root-mean-squared estimates of statistical fluctuations of the involved loss functions. We show that in typical situations, the simultaneous GSIB compression requires qualitatively less data to achieve the same errors compared to compressing variables one at a time. We suggest that this is an example of a more general principle that simultaneous compression is more data efficient than independent compression of each of the input variables.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app