Add like
Add dislike
Add to saved papers

Pharmacological targeting of histone H3K27 acetylation/BRD4-dependent induction of ALDH1A3 for early-phase drug tolerance of gastric cancer.

Cancer Res Commun 2024 April 26
Anticancer drug-tolerant persister (DTP) cells at an early phase of chemotherapy reshape refractory tumors. Aldehyde dehydrogenase 1 family member A3 (ALDH1A3) is commonly upregulated by various anticancer drugs in gastric cancer patient-derived cells (PDCs) and promotes tumor growth. However, the mechanism underlying the generation of ALDH1A3-positive DTP cells remains elusive. Here, we investigated the mechanism of ALDH1A3 expression and a combination therapy targeting gastric cancer DTP cells. We found that gastric cancer tissues treated with neoadjuvant chemotherapy (NAC) showed high ALDH1A3 expression. ChIP-PCR and ChIP-seq analyses revealed that histone H3 lysine 27 acetylation was enriched in the ALDH1A3 promoter in 5-Fluorouracil (5-FU)-tolerant persister PDCs. By chemical library screening, we found that the BET inhibitors OTX015/birabresib and I-BET-762/molibresib suppressed DTP-related ALDH1A3 expression and preferentially inhibited DTP cell growth. In DTP cells, BRD4, but not BRD2/3, was recruited to the ALDH1A3 promoter and BRD4 knockdown decreased drug-induced ALDH1A3 upregulation. Combination therapy with 5-FU and OTX015 significantly suppressed in vivo tumor growth. These observations suggest that BET inhibitors are efficient DTP cell-targeting agents for gastric cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app