Add like
Add dislike
Add to saved papers

Integrated number sense tutoring remediates aberrant neural representations in children with mathematical disabilities.

bioRxiv 2024 April 13
UNLABELLED: Number sense is essential for early mathematical development but it is compromised in children with mathematical disabilities (MD). Here we investigate the impact of a personalized 4-week Integrated Number Sense (INS) tutoring program aimed at improving the connection between nonsymbolic (sets of objects) and symbolic (Arabic numerals) representations in children with MD. Utilizing neural pattern analysis, we found that INS tutoring not only improved cross-format mapping but also significantly boosted arithmetic fluency in children with MD. Critically, the tutoring normalized previously low levels of cross-format neural representations in these children to pre-tutoring levels observed in typically developing, especially in key brain regions associated with numerical cognition. Moreover, we identified distinct, 'inverted U-shaped' neurodevelopmental changes in the MD group, suggesting unique neural plasticity during mathematical skill development. Our findings highlight the effectiveness of targeted INS tutoring for remediating numerical deficits in MD, and offer a foundation for developing evidence-based educational interventions.

SIGNIFICANCE STATEMENT: Focusing on neural mechanisms, our study advances understanding of how numerical problem-solving can be enhanced in children with mathematical disabilities (MD). We evaluated an integrated number sense tutoring program designed to enhance connections between concrete (e.g. 2 dots) and symbolic (e.g. "2") numerical representations. Remarkably, the tutoring program not only improved these children's ability to process numbers similarly across formats but also enhanced their arithmetic skills, indicating transfer of learning to related domains. Importantly, tutoring normalized brain processing patterns in children with MD to resemble those of typically developing peers. These insights highlight the neural bases of successful interventions for MD, offering a foundation for developing targeted educational strategies that could markedly improve learning outcomes for children facing these challenges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app