Add like
Add dislike
Add to saved papers

Low-dose ionizing γ-radiation elicits the extrusion of neutrophil extracellular traps.

PURPOSE: Cancer patients frequently undergo radiotherapy in their clinical management with unintended irradiation of blood vessels and copiously irrigated organs in which polymorphonuclear leukocytes circulate. Following the observation that such low doses of ionizing radiation are able to induce neutrophils to extrude neutrophil extracellular traps (NETs), we have investigated the mechanisms, consequences and the occurrence of such phenomena in patients undergoing radiotherapy.

EXPERIMENTAL DESIGN: NETosis was analyzed in cultures of neutrophils isolated from healthy donors, cancer patients and cancer-bearing mice under confocal microscopy. Cocultures of radiation-induced NETs, immune effector lymphocytes and tumor cells were used to study the effects of irradiation-induced NETs on immune cytotoxicity. Radiation-induced NETs were intravenously injected to mice assessing their effects on metastasis. Circulating NETs in irradiated cancer patients were measured by ELISA methods detecting MPO-DNA complexes and citrullinated H3.

RESULTS: Very low γ-radiation doses (0.5-1 Gy) given to neutrophils elicit NET formation in a manner dependent on oxidative stress, NADPH oxidase activity and autocrine interleukin-8. Radiation-induced NETs interfere with NK- and T-cell cytotoxicity. As a consequence, pre-injection of irradiation-induced NETs increases the number of successful metastases in mouse tumor models. Increases in circulating NETs were readily detected in two prospective series of patients following the first fraction of their radiotherapy courses.

CONCLUSIONS: NETosis is induced by low-dose ionizing irradiation in a neutrophil-intrinsic fashion and radiation-induced NETs are able to interfere with immune-mediated cytotoxicity. Radiation-induced NETs foster metastasis in mouse models and can be detected in the circulation of patients undergoing conventional radiotherapy treatments.

Full text links

We have located open access text paper links.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app