Add like
Add dislike
Add to saved papers

An optical aptamer-based cytokine nanosensor detects macrophage activation by bacterial toxins.

bioRxiv 2024 April 6
Overactive or dysregulated cytokine expression is hallmark of many acute and chronic inflammatory diseases. This is true for acute or chronic infection, neurodegenerative diseases, autoimmune diseases, cardiovascular disease, cancer, and others. Cytokines such as interleukin-6 (IL-6) are known therapeutic targets and biomarkers for such inflammatory diseases. Platforms for cytokine detection are therefore desirable tools for both research and clinical applications. Single-walled carbon nanotubes (SWCNT) are versatile nanomaterials with near-infrared fluorescence that can serve as transducers for optical sensors. When functionalized with an analyte-specific recognition element, SWCNT emission may become sensitive and selective towards the desired target. SWCNT-aptamer sensors are easily assembled, inexpensive, and biocompatible. In this work, we introduced a nanosensor design based on SWCNT and a DNA aptamer specific to IL-6. We first evaluated several SWCNT-aptamer constructs based on this simple direct complexation method, wherein the aptamer both solubilizes the SWCNT and confers sensitivity to IL-6. The sensor limit of detection, 105 ng/mL, lies in the relevant range for pathological IL-6 levels. Upon investigation of sensor kinetics, we found rapid response within seconds of antigen addition which continued over the course of three hours. We found that this sensor construct is stable, and the aptamer is not displaced from the nanotube surface during IL-6 detection. Finally, we investigated the ability of this sensor construct to detect macrophage activation caused by bacterial lipopolysaccharides (LPS) in an in vitro model of disease, finding rapid and sensitive detection of macrophage-expressed IL-6. We are confident further development of this sensor will have novel implications for diagnosis of acute and chronic inflammatory diseases, in addition to contributing to the understanding of the role of cytokines in these diseases.

Full text links

We have located open access text paper links.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app