Add like
Add dislike
Add to saved papers

A Vibrio cholerae Type IV restriction system targets glucosylated 5-hydroxyl methyl cytosine to protect against phage infection.

bioRxiv 2024 April 6
UNLABELLED: A major challenge faced by Vibrio cholerae is constant predation by bacteriophage (phage) in aquatic reservoirs and during infection of human hosts. To overcome phage predation, V. cholerae has evolved a myriad of phage defense systems. Although several novel defense systems have been discovered, we hypothesized more were encoded in V. cholerae given the relative paucity of phage that have been isolated which infect this species. Using a V. cholerae genomic library, we identified a Type IV restriction system consisting of two genes within a 16kB region of the Vibrio pathogenicity island-2 that we name TgvA and TgvB ( T ype I-embedded g mrSD-like system of V PI-2). We show that both TgvA and TgvB are required for defense against T2, T4, and T6 by targeting glucosylated 5-hydroxymethylcytosine (5hmC). T2 or T4 phages that lose the glucose modification are resistant to TgvAB defense but exhibit a significant evolutionary tradeoff becoming susceptible to other Type IV restriction systems that target unglucosylated 5hmC. We show that additional phage defense genes are encoded in VPI-2 that protect against other phage like T3, secΦ18, secΦ27 and λ. Our study uncovers a novel Type IV restriction system in V. cholerae , increasing our understanding of the evolution and ecology of V. cholerae while highlighting the evolutionary interplay between restriction systems and phage genome modification.

ABSTRACT IMPORTANCE: Bacteria are constantly being predated by bacteriophage (phage). To counteract this predation, bacteria have evolved a myriad of defense systems. Some of these systems specifically digest infecting phage by recognizing unique base modifications present on the phage DNA. Here, we discover a Type IV restriction system encoded in V. cholerae that we name TgvAB and demonstrate it recognizes and restricts phage that have 5-hydroxymethylcytosine glucosylated DNA. Moreover, the evolution of resistance to TgvAB render phage susceptible to other Type IV restriction systems, demonstrating a significant evolutionary tradeoff. These results enhance our understanding of the evolution of V. cholerae and more broadly how bacteria evade phage predation.

Full text links

We have located open access text paper links.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app