Add like
Add dislike
Add to saved papers

Context-dependent roles for ubiquitous mitochondrial creatine kinase CKMT1 in breast cancer progression.

Cell Reports 2024 April 13
Metabolic reprogramming is a hallmark of cancer, enabling cancer cells to rapidly proliferate, invade, and metastasize. We show that creatine levels in metastatic breast cancer cell lines and secondary metastatic tumors are driven by the ubiquitous mitochondrial creatine kinase (CKMT1). We discover that, while CKMT1 is highly expressed in primary tumors and promotes cell viability, it is downregulated in metastasis. We further show that CKMT1 downregulation, as seen in breast cancer metastasis, drives up mitochondrial reactive oxygen species (ROS) levels. CKMT1 downregulation contributes to the migratory and invasive potential of cells by ROS-induced upregulation of adhesion and degradative factors, which can be reversed by antioxidant treatment. Our study thus reconciles conflicting evidence about the roles of metabolites in the creatine metabolic pathway in breast cancer progression and reveals that tight, context-dependent regulation of CKMT1 expression facilitates cell viability, cell migration, and cell invasion, which are hallmarks of metastatic spread.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app