Add like
Add dislike
Add to saved papers

Armored TGFβRIIDN ROR1-CAR T cells reject solid tumors and resist suppression by constitutively-expressed and treatment-induced TGFβ1.

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy target receptor tyrosine kinase-like orphan receptor 1 (ROR1) is broadly expressed in hematologic and solid tumors, however clinically-characterized ROR1-CAR T cells with single chain variable fragment (scFv)-R12 targeting domain failed to induce durable remissions, in part due to the immunosuppressive tumor microenvironment (TME). Herein, we describe the development of an improved ROR1-CAR with a novel, fully human scFv9 targeting domain, and augmented with TGFβRIIDN armor protective against a major TME factor, transforming growth factor beta (TGFβ).

METHODS: CAR T cells were generated by lentiviral transduction of enriched CD4+ and CD8+ T cells, and the novel scFv9-based ROR1-CAR-1 was compared with the clinically-characterized ROR1-R12-scFv-based CAR-2 in vitro and in vivo.

RESULTS: CAR-1 T cells exhibited greater CAR surface density than CAR-2 when normalized for %CAR+ , and produced more interferon (IFN)-γ tumor necrosis factor (TNF)-α and interleukin (IL)-2 in response to hematologic (Jeko-1, RPMI-8226) and solid (OVCAR-3, Capan-2, NCI-H226) tumor cell lines in vitro. In vivo, CAR-1 and CAR-2 both cleared hematologic Jeko-1 lymphoma xenografts, however only CAR-1 fully rejected ovarian solid OVCAR-3 tumors, concordantly with greater expansion of CD8+ and CD4+ CAR T cells, and enrichment for central and effector memory phenotype. When equipped with TGFβ-protective armor TGFβRIIDN, CAR-1 T cells resisted TGFβ-mediated pSmad2/3 phosphorylation, as compared with CAR-1 alone. When co-cultured with ROR-1+ AsPC-1 pancreatic cancer line in the presence of TGFβ1, armored CAR-1 demonstrated improved recovery of killing function, IFN-γ, TNF-α and IL-2 secretion. In mouse AsPC-1 pancreatic tumor xenografts overexpressing TGFβ1, armored CAR-1, in contrast to CAR-1 alone, achieved complete tumor remissions, and yielded accelerated expansion of CAR+ T cells, diminished circulating active TGFβ1, and no apparent toxicity or weight loss. Unexpectedly, in AsPC-1 xenografts without TGFβ overexpression, TGFβ1 production was specifically induced by ROR-1-CAR T cells interaction with ROR-1 positive tumor cells, and the TGFβRIIDN armor conferred accelerated tumor clearance.

CONCLUSIONS: The novel fully human TGFßRIIDN-armored ROR1-CAR-1 T cells are highly potent against ROR1-positive tumors, and withstand the inhibitory effects of TGFß in solid TME. Moreover, TGFβ1 induction represents a novel, CAR-induced checkpoint in the solid TME, which can be circumvented by co-expressing the TGβRIIDN armor on T cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app