Add like
Add dislike
Add to saved papers

Marker selection strategies for circulating tumor DNA guided by phylogenetic inference.

bioRxiv 2024 March 28
MOTIVATION: Blood-based profiling of tumor DNA ("liquid biopsy") has offered great prospects for non-invasive early cancer diagnosis, treatment monitoring, and clinical guidance, but require further advances in computational methods to become a robust quantitative assay of tumor clonal evolution. We propose new methods to better characterize tumor clonal dynamics from circulating tumor DNA (ctDNA), through application to two specific questions: 1) How to apply longitudinal ctDNA data to refine phylogeny models of clonal evolution, and 2) how to quantify changes in clonal frequencies that may be indicative of treatment response or tumor progression. We pose these questions through a probabilistic framework for optimally identifying maximum likelihood markers and applying them to characterizing clonal evolution.

RESULTS: We first estimate a distribution over plausible clonal lineage models, using bootstrap samples over pre-treatment tissue-based sequence data. We then refine these lineage models and the clonal frequencies they imply over successive longitudinal samples. We use the resulting framework for modeling and refining tree distributions to pose a set of optimization problems to select ctDNA markers to maximize measures of utility capturing ability to solve the two questions of reducing uncertain in phylogeny models or quantifying clonal frequencies given the models. We tested our methods on synthetic data and showed them to be effective at refining distributions of tree models and clonal frequencies so as to minimize measures of tree distance relative to the ground truth. Application of the tree refinement methods to real tumor data further demonstrated their effectiveness in refining a clonal lineage model and assessing its clonal frequencies. The work shows the power of computational methods to improve marker selection, clonal lineage reconstruction, and clonal dynamics profiling for more precise and quantitative assays of tumor progression.

AVAILABILITY: https://github.com/CMUSchwartzLab/Mase-phi.git .

CONTACT: [email protected].

Full text links

We have located open access text paper links.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app