Add like
Add dislike
Add to saved papers

Three-component dicarbofunctionalization of allylamines via nucleopalladation pathway: unlocking vicinal and geminal selectivity.

Chemical Science 2024 March 28
A palladium(ii)-catalyzed vicinal as well as geminal selective dicarbofunctionalization of allylamine embedded in a removable picolinamide auxiliary is developed by exploiting a nucleopalladation-triggered intermolecular three-component coupling reaction. The vicinal selectivity was accomplished by engaging allylamine, indoles, and aryl or styrenyl halides through a Pd(ii)/Pd(iv) reaction manifold, while the two-fold coupling of allylamine and indoles via a Pd(ii)/Pd(0) reaction modality resulted in geminal selectivity. The protocol is operationally simple, scalable, and offers two distinct types of products bearing functionalized tryptamine and bisindolyl frameworks in very high to excellent yields. The reaction features a wide substrate generality and also remains effective in the presence of various medicinally relevant scaffolds. Notably, this work represents the first example of nucleopalladation-guided intermolecular dicarbofunctionalization of allylamines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app