Add like
Add dislike
Add to saved papers

Size-Tunable Manganese-Doped Spheroidal CsPbCl 3 Quantum Dots.

Manganese doping has been demonstrated as a versatile tool to tune the emission of CsPbCl3 nanocrystals (NCs). Although this has been demonstrated in nanocubes and nanoplatelets, strategies for doping Mn2+ in size-tunable, excitonic CsPbCl3 quantum dots (QDs) remain absent. In this work, we demonstrate the synthesis of size-tunable spheroidal CsPbCl3 :Mn2+ QDs, which can be obtained by a water-hexane interfacial combined anion and cation exchange strategy starting from CsPbBr3 QDs. Interestingly, the QDs exhibit a fast 0.2 ms Mn2+ photoluminescence (PL) lifetime and an energy transfer (ET) time of approximately 100 ps from the excitonic state of the QD to the atomic state of the Mn2+ ion. The size dependence observation of the manganese PL efficiency and the slow ET rate suggest that Mn2+ mainly gets incorporated at the QD's surface, highlighting the importance of strategies chosen for the incorporation of Mn2+ into perovskite QDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app