Journal Article
Review
Add like
Add dislike
Add to saved papers

Pillar[ n ]arenes in the Fight against Biofilms: Current Developments and Future Perspectives.

The global surge in bacterial infections, compounded by the alarming escalation of drug-resistant strains, has evolved into a critical public health crisis. Among the challenges posed, biofilms stand out due to their formidable resistance to conventional antibiotics. This review delves into the burgeoning potential of pillar[ n ]arenes, distinctive macrocyclic host molecules, as promising anti-biofilm agents. The review is structured into two main sections, each dedicated to exploring distinct facets of pillar[ n ]arene applications. The first section scrutinizes functionalized pillar[ n ]arenes with a particular emphasis on cationic derivatives. This analysis reveals their significant efficacy in inhibiting biofilm formation, underscoring the pivotal role of specific chemical attributes in combating microbial communities. The second section of the review shifts its focus to inclusion complexes, elucidating how pillar[ n ]arenes serve as encapsulation platforms for antibiotics. This encapsulation enhances the stability of antibiotics and enables a controlled release, thereby amplifying their antibacterial activity. The examination of inclusion complexes provides valuable insights into the potential synergy between pillar[ n ]arenes and traditional antibiotics, offering a novel avenue for overcoming biofilm resistance. This comprehensive review highlights the escalating global threat of bacterial infections and the urgent need for innovative strategies to counteract drug-resistant biofilms. The unique properties of pillar[ n ]arenes, both as functionalized molecules and as inclusion complex hosts, position them as promising candidates in the quest for effective anti-biofilm agents. The exploration of their distinct mechanisms opens new avenues for research and development in the ongoing battle against bacterial infections and biofilm-related health challenges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app