Add like
Add dislike
Add to saved papers

Isoflurane preconditioning induced genomic changes in mouse cortex.

BJA Open 2024 June
BACKGROUND: Altered patterns of genetic expression induced by isoflurane preconditioning in mouse brain have not yet been investigated. The aim of our pilot study is to examine the temporal sequence of changes in the transcriptome of mouse brain cortex produced by isoflurane preconditioning.

METHODS: Twelve-wk-old wild-type (C57BL/6J) male mice were randomly assigned for the experiments. Mice were exposed to isoflurane 2% in air for 1 h and brains were harvested at the following time points-immediately (0 h), and at 6, 12, 24, 36, 48, and 72 h after isoflurane exposure. A separate cohort of mice were exposed to three doses of isoflurane on days 1, 2, and 3 and brains were harvested after the third exposure. The NanoString mouse neuropathology panel was used to analyse isoflurane-induced gene expression in the cortex. The neuropathology panel included 760 genes covering pathways involved in neurodegeneration and other nervous system diseases, and 10 internal reference genes for data normalisation.

RESULTS: Genes involving several pathways were upregulated and downregulated by isoflurane preconditioning. Interestingly, a biphasic response was noted, meaning, an early expression of genes (until 6 h), followed by a transient pause (until 24 h), and a second wave of genomic response beginning at 36 h of isoflurane exposure was noted.

CONCLUSIONS: Isoflurane preconditioning induces significant alterations in the genes involved in neurodegeneration and other nervous system disorders in a temporal sequence. These data could aid in the identification of molecular mechanisms behind isoflurane preconditioning-induced neuroprotection in various central nervous system diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app