Add like
Add dislike
Add to saved papers

Evaluation of prenatal calabash chalk geophagy on the developing brain of Wistar rats.

Calabash chalk (CaC) is an aluminium silicate hydroxide compound with heavy metal constituents, making it a potential neurotoxicant. Pregnant women often consume CaC as an antiemetic, which may interfere with the normal development of the foetal brain. Here, we evaluated the effects of CaC administration in pregnant rats on the brain of the offspring. Wistar rat dams were assigned to one of three groups: control, 200 mg/kg and 800 mg/kg of a CaC suspension. Administrations lasted 14 days (gestation days 7-20). On day 14, 5-bromo-2'-deoxyuridine (BrdU) was administered and dams were allowed to term. Behavioural tests were performed on different days as the pups matured, and they were sacrificed on post-natal days 30 and 60. Brains were processed for histology and Western blotting. Results showed no significant differences in surface righting reflex, cliff avoidance, negative geotaxis and open-field activity. No hippocampal and somatosensory cortical cytoarchitectonic alterations and no significant signs of glial fibrillary acidic protein (GFAP) activation were observed. Neuronal nuclei counts showed variability in the somatosensory cortex and hippocampus of the CaC group. BrdU-positive cells were significantly lower in the 200 mg/kg group and higher in the 800 mg/kg group. Doublecortin-X-positive cells were not different in all the CaC groups. Astrocytes and microglia Western blotting quantification confirmed no significant increase in pup glial cells in adulthood. Prenatal consumption of CaC at indicated dosages may not be deleterious to the developing brain, especially after cessation of exposure and during maturation of the animal. However, the differences in neuronal and glial populations may be due to their ability to cope with CaC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app