Add like
Add dislike
Add to saved papers

Rare Plasmid-Mediated AmpC Beta-Lactamase DHA-1 Located on Easy Mobilized IS26-Related Genetic Element Detected in Escherichia coli from Livestock and Food in Germany.

Microorganisms 2024 March 22
AmpC beta-lactamases cause resistance to third-generation cephalosporins, including beta-lactamase inhibitors. In Escherichia coli from the German food production chain, the majority of AmpC beta-lactamase activity can be attributed to plasmid-mediated CMY-2 or overproduction of chromosomal AmpC beta-lactamase, but occasionally other enzymes like DHA-1 are involved. This study investigated the prevalence of the AmpC beta-lactamase DHA-1 in ESBL/AmpC-producing E. coli ( n = 4706) collected between 2016 and 2021 as part of a German antimicrobial resistance monitoring program along the food chain. Eight isolates (prevalence < 0.2%) were detected and further characterized by PFGE, transformation and conjugation experiments as well as short-read and long-read sequencing. All eight strains harbored bla DHA-1 together with qnrB4 , sul1 and mph(A) resistance genes on an IS26 composite transposon on self-transferable IncFII or IncFIA/FIB/II plasmids. During laboratory experiments, activation of the translocatable unit of IS26-bound structures was observed. This was shown by the variability of plasmid sizes in original isolates, transconjugants or transferred plasmids, and correspondingly, duplications of resistance fragments were found in long-read sequencing. This activation could be artificial due to laboratory handling or naturally occurring. Nevertheless, DHA-1 is a rare AmpC beta-lactamase in livestock and food in Germany, and its dissemination will be monitored in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app