Add like
Add dislike
Add to saved papers

Atom-by-atom imaging of moiré transformations in 2D transition metal dichalcogenides.

Science Advances 2024 March 30
Understanding the atomic-scale mechanisms that govern the structure of interfaces is critical across materials systems but particularly so for two-dimensional (2D) moiré materials. Here, we image, atom-by-atom, the thermally induced structural evolution of twisted bilayer transition metal dichalcogenides using in situ transmission electron microscopy. We observe low-temperature, local conversion of moiré superlattice into nanoscale aligned domains. Unexpectedly, this process occurs by nucleating a new grain within one monolayer, whose crystal orientation is templated by the other. The aligned domains grow through collective rotation of moiré supercells and hopping of 5|7 defect pairs at moiré boundaries. This provides mechanistic insight into the atomic-scale interactions controlling moiré structures and illustrates the potential to pattern interfacial structure and properties of 2D materials at the nanoscale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app