Add like
Add dislike
Add to saved papers

Nicotinamide ribose ameliorates myocardial ischemia/reperfusion injury by regulating autophagy and regulating oxidative stress.

Nicotinamide riboside (NR) has been reported to play a protective role in myocardial ischemia-reperfusion (I/R) injury when used in association with other drugs; however, the individual effect of NR is unknown. In the present study Evan's blue/triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, echocardiography, western blotting, reverse transcription-quantitative PCR, and the detection of myocardial injury-associated markers and oxidative stress metabolites were used to explore the ability of NR to alleviate cardiac I/R injury and the relevant mechanisms of action. In a mouse model of I/R injury, dietary supplementation with NR reduced the area of myocardial ischemic infarction, alleviated pathological myocardial changes, decreased inflammatory cell infiltration and attenuated the levels of mitochondrial reactive oxygen species (ROS) and creatine kinase myocardial band (CK-MB). In addition, echocardiography suggested that NR alleviated the functional damage of the myocardium caused by I/R injury. In H9c2 cells, NR pretreatment reduced the levels of lactate dehydrogenase, CK-MB, malondialdehyde, superoxide dismutase and ROS, and reduced cell mortality after the induction of hypoxia/reoxygenation (H/R) injury. In addition, the results indicated NR activated sirt 1 via the upregulation of nicotinamide adenine dinucleotide (NAD+ ) and protected the cells against autophagy. The sirt 1 inhibitor EX527 significantly attenuated the ability of NR to inhibit autophagy, but had no significant effect on the ROS content of the H9c2 cells. In summary, the present study suggests that NR protects against autophagy by increasing the NAD+ content in the body via the sirt 1 pathway, although the sirt 1 pathway does not affect oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app