Add like
Add dislike
Add to saved papers

Quantitative susceptibility mapping for detection of kidney stones, hemorrhage differentiation, and cyst classification in ADPKD.

Abdominal Radiology 2024 March 27
BACKGROUND AND PURPOSE: The objective is to demonstrate feasibility of quantitative susceptibility mapping (QSM) in autosomal dominant polycystic kidney disease (ADPKD) patients and to compare imaging findings with traditional T1/T2w magnetic resonance imaging (MRI).

METHODS: Thirty-three consecutive patients (11 male, 22 female) diagnosed with ADPKD were initially selected. QSM images were reconstructed from the multiecho gradient echo data and compared to co-registered T2w, T1w, and CT images. Complex cysts were identified and classified into distinct subclasses based on their imaging features. Prevalence of each subclass was estimated.

RESULTS: QSM visualized two renal calcifications measuring 9 and 10 mm and three pelvic phleboliths measuring 2 mm but missed 24 calcifications measuring 1 mm or less and 1 larger calcification at the edge of the field of view. A total of 121 complex T1 hyperintense/T2 hypointense renal cysts were detected. 52 (43%) Cysts appeared hyperintense on QSM consistent with hemorrhage; 60 (49%) cysts were isointense with respect to simple cysts and normal kidney parenchyma, while the remaining 9 (7%) were hypointense. The presentation of the latter two complex cyst subtypes is likely indicative of proteinaceous composition without hemorrhage.

CONCLUSION: Our results indicate that QSM of ADPKD kidneys is possible and uniquely suited to detect large renal calculi without ionizing radiation and able to identify properties of complex cysts unattainable with traditional approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app