Add like
Add dislike
Add to saved papers

Cysteine-independent CRISPR-associated protein labeling for presentation and co-delivery of molecules toward genetic and epigenetic regulations.

Labeling of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) associated proteins (Cas) is a huge challenge for their genome engineering applications. Cysteine-mediated bioconjugation is the most efficient strategy for labeling Cas proteins. Introducing a cysteine residue in the protein at the right place might be challenging without perturbing the enzymatic activity. We report a method that does not require cysteine residues for small molecule presentation on the CRISPR-associated protein SpCas9 for in vitro protein detection, probing cellular protein expression, and nuclear co-delivery of molecules in mammalian cells. We repurposed a simple protein purification tag His6 peptide for non-covalent labeling of molecules on the CRISPR enzyme SpCas9. The small molecule labeling enabled us to detect SpCas9 in a biochemical assay. We demonstrate that small molecule labeling can be utilized for probing bacterial protein expression in realtime. Furthermore, we coupled SpCas9's nuclear-targeting ability in co-delivering the presenting small molecules to the mammalian cell nucleus for prospective genome engineering applications. Furthermore, we demonstrate that the method can be generalized to label oligonucleotides for multiplexing CRISPR-based genome editing and template-mediated DNA repair applications. This work paves the way for genomic loci-specific bioactive small molecule and oligonucleotide co-delivery toward genetic and epigenetic regulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app