Add like
Add dislike
Add to saved papers

Incorporation of Drone Technology Into the Chain of Survival for OHCA: Estimation of Time Needed for Bystander Treatment of OHCA and CPR Performance.

BACKGROUND: Drone-delivered automated external defibrillators (AEDs) hold promises in the treatment of out-of-hospital cardiac arrest. Our objective was to estimate the time needed to perform resuscitation with a drone-delivered AED and to measure cardiopulmonary resuscitation (CPR) quality.

METHODS: Mock out-of-hospital cardiac arrest simulations that included a 9-1-1 call, CPR, and drone-delivered AED were conducted. Each simulation was timed and video-recorded. CPR performance metrics were recorded by a Laerdal Resusci Anne Quality Feedback System. Multivariable regression modeling examined factors associated with time from 9-1-1 call to AED shock and CPR quality metrics (compression rate, depth, recoil, and chest compression fraction). Comparisons were made among those with recent CPR training (≤2 years) versus no recent (>2 years) or prior CPR training.

RESULTS: We recruited 51 research participants between September 2019 and March 2020. The median age was 34 (Q1-Q3, 23-54) years, 56.9% were female, and 41.2% had recent CPR training. The median time from 9-1-1 call to initiation of CPR was 1:19 (Q1-Q3, 1:06-1:26) minutes. A median time of 1:59 (Q1-Q3, 01:50-02:20) minutes was needed to retrieve a drone-delivered AED and deliver a shock. The median CPR compression rate was 115 (Q1-Q3, 109-124) beats per minute, the correct compression depth percentage was 92% (Q1-Q3, 25-98), and the chest compression fraction was 46.7% (Q1-Q3, 39.9%-50.6%). Recent CPR training was not associated with CPR quality or time from 9-1-1 call to AED shock. Younger age (per 10-year increase; β, 9.97 [95% CI, 4.63-15.31] s; P <0.001) and prior experience with AED (β, -30.0 [95% CI, -50.1 to -10.0] s; P =0.004) were associated with more rapid time from 9-1-1 call to AED shock. Prior AED use (β, 6.71 [95% CI, 1.62-11.79]; P =0.011) was associated with improved chest compression fraction percentage.

CONCLUSION: Research participants were able to rapidly retrieve an AED from a drone while largely maintaining CPR quality according to American Heart Association guidelines. Chest compression fraction was lower than expected.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app