Add like
Add dislike
Add to saved papers

A series of isostructural metal-organic frameworks for an enhanced electro-catalytic oxygen evolution reaction.

Three new isostructural MOFs (ZnTIA, CoTIA and CdTIA) were synthesized by the solvothermal synthesis of the organic linker 5-triazole isophthalic acid (5-TIA) with the transition metals Zn(II), Co(II) and Cd(II) in the presence of the structure directing agent tetramethyl ammonium chloride (TMA). These three MOFs were characterized thoroughly by ScXRD, PXRD, FT-IR, TGA, BET and SEM. They have excellent thermal and water stabilities. Among all these MOFs mentioned, pristine CoTIA exhibited excellent electrocatalytic activity toward the oxygen evolution reaction (OER). It exhibits a Tafel slope of 68.9 mV dec-1 with an overpotential of 337 mV at 10 mA cm-2 current density. The OER activity of the CoTIA MOF is relatively equivalent to that of the state-of-the-art catalyst (RuO2 ). Furthermore, the mechanical stability of crystalline ZnTIA, CoTIA and CdTIA MOFs was tested under ball mill pressure. The result showed that all the MOFs exhibit low tolerance to mechanical force because their structure was highly distorted or collapsed under such pressure, which is reflected by their poor electrocatalytic OER activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app