Add like
Add dislike
Add to saved papers

Morphometric similarity differences in drug-naive Parkinson's disease correlate with transcriptomic signatures.

BACKGROUND: Differences in cortical morphology have been reported in individuals with Parkinson's disease (PD). However, the pathophysiological mechanism of transcriptomic vulnerability in local brain regions remains unclear.

OBJECTIVE: This study aimed to characterize the morphometric changes of brain regions in early drug-naive PD patients and uncover the brain-wide gene expression correlates.

METHODS: The morphometric similarity (MS) network analysis was used to quantify the interregional structural similarity from multiple magnetic resonance imaging anatomical indices measured in each brain region of 170 early drug-naive PD patients and 123 controls. Then, we applied partial least squares regression to determine the relationship between regional changes in MS and spatial transcriptional signatures from the Allen Human Brain Atlas dataset, and identified the specific genes related to MS differences in PD. We further investigated the biological processes by which the PD-related genes were enriched and the cellular characterization of these genes.

RESULTS: Our results showed that MS was mainly decreased in cingulate, frontal, and temporal cortical areas and increased in parietal and occipital cortical areas in early drug-naive PD patients. In addition, genes whose expression patterns were associated with regional MS changes in PD were involved in astrocytes, excitatory, and inhibitory neurons and were functionally enriched in neuron-specific biological processes related to trans-synaptic signaling and nervous system development.

CONCLUSIONS: These findings advance our understanding of the microscale genetic and cellular mechanisms driving macroscale morphological abnormalities in early drug-naive PD patients and provide potential targets for future therapeutic trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app