Add like
Add dislike
Add to saved papers

Subtle white matter intensity changes on fluid-attenuated inversion recovery imaging in patients with ischaemic stroke.

Leukoaraiosis is a neuroimaging marker of small-vessel disease that is characterized by high signal intensity on fluid-attenuated inversion recovery MRI. There is increasing evidence from pathology and neuroimaging suggesting that the structural abnormalities that characterize leukoaraiosis are actually present within regions of normal-appearing white matter, and that the underlying pathophysiology of white matter damage related to small-vessel disease involves blood-brain barrier damage. In this study, we aim to verify whether leukoaraiosis is associated with elevated signal intensity on fluid-attenuated inversion recovery imaging, a marker of brain tissue free-water accumulation, in normal-appearing white matter. We performed a cross-sectional study of adult patients admitted to our hospital with a diagnosis of acute ischaemic stroke or transient ischaemic attack. Leukoaraiosis was segmented using a semi-automated method involving manual outlining and signal thresholding. White matter regions were segmented based on the probabilistic tissue maps from the International Consortium for Brain Mapping 152 atlas. Also, normal-appearing white matter was further segmented based on voxel distance from leukoaraiosis borders, resulting in five normal-appearing white matter strata at increasing voxel distances from leukoaraiosis. The relationship between mean normalized fluid-attenuated inversion recovery signal intensity on normal-appearing white matter and leukoaraiosis volume was studied in a multivariable statistical analysis using linear mixed modelling, having normal-appearing white matter strata as a clustering variable. One hundred consecutive patients meeting inclusion and exclusion criteria were selected for analysis (53% female, mean age 68 years). Mean normalized fluid-attenuated inversion recovery signal intensity on normal-appearing white matter was higher in the vicinity of leukoaraiosis and progressively lower at increasing distances from leukoaraiosis. In a multivariable analysis, the mean normalized fluid-attenuated inversion recovery signal intensity on normal-appearing white matter was positively associated with leukoaraiosis volume and age ( B = 0.025 for each leukoaraiosis quartile increase; 95% confidence interval 0.019-0.030). This association was found similarly across normal-appearing white matter strata. Voxel maps of the mean normalized fluid-attenuated inversion recovery signal intensity on normal-appearing white matter showed an increase in signal intensity that was not adjacent to leukoaraiosis regions. Our results show that normal-appearing white matter exhibits subtle signal intensity changes on fluid-attenuated inversion recovery imaging that are related to leukoaraiosis burden. These results suggest that diffuse free-water accumulation is likely related to the aetiopathogenic processes underlying the development of white matter damage related to small-vessel disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app