Add like
Add dislike
Add to saved papers

Invigorating human MSCs for transplantation therapy via Nrf2/DKK1 co-stimulation in an acute-on-chronic liver failure mouse model.

BACKGROUND: Since boosting stem cell resilience in stressful environments is critical for the therapeutic efficacy of stem cell-based transplantations in liver disease, this study aimed to establish the efficacy of a transient plasmid-based preconditioning strategy for boosting the capability of mesenchymal stromal cells (MSCs) for anti-inflammation/antioxidant defenses and paracrine actions in recipient hepatocytes.

METHODS: Human adipose mesenchymal stem cells (hADMSCs) were subjected to transfer, either with or without the nuclear factor erythroid 2-related factor 2 (Nrf2)/Dickkopf1 (DKK1) genes, followed by exposure to TNF-α/H2 O2 . Mouse models were subjected to acute chronic liver failure (ACLF) and subsequently injected with either transfected or untransfected MSCs. These hADMSCs and ACLF mouse models were used to investigate the interaction between Nrf2/DKK1 and the hepatocyte receptor cytoskeleton-associated protein 4 (CKAP4).

RESULTS: Activation of Nrf2 and DKK1 enhanced the anti-stress capacity of MSCs in vitro . In a murine model of ACLF, transient co-overexpression of Nrf2 and DKK1 via plasmid transfection improved MSC resilience against inflammatory and oxidative assaults, boosted MSC transplantation efficacy, and promoted recipient liver regeneration due to a shift from the activation of the anti-regenerative IFN-γ/STAT1 pathway to the pro-regenerative IL-6/STAT3 pathway in the liver. Importantly, the therapeutic benefits of MSC transplantation were nullified when the receptor CKAP4, which interacts with DKK1, was specifically removed from recipient hepatocytes. However, the removal of the another receptor low-density lipoprotein receptor-related protein 6 (LRP6) had no impact on the effectiveness of MSC transplantation. Moreover, in long-term observations, no tumorigenicity was detected in mice following transplantation of transiently preconditioned MSCs.

CONCLUSIONS: Co-stimulation with Nrf2/DKK1 safely improved the efficacy of human MSC-based therapies in murine models of ACLF through CKAP4-dependent paracrine mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app