Add like
Add dislike
Add to saved papers

Supramolecular handshakes: characterization of urea-carboxylate interactions within calixarene frameworks.

ChemPlusChem 2024 March 26
The research of molecular capsules offers high application potential and numerous benefits in various fields. With the aim of forming supramolecular capsules which can be reversibly assembled and dissociated by simple external stimuli, we studied interactions between calixarenes containing urea and carboxylate moieties. To this end two ureido-derivatives of p-tert-butylcalix[4]arene comprising phenylureido-moieties and diacetate-calix[4]arenes were prepared. The binding of acetate by ureido-derivatives of calixarene in acetonitrile was characterized, revealing high affinity of ureido-calixarenes for carboxylates. This suggested high potential for uniting the complementary calix[4]arenes via H-bonds between carboxylic groups and urea moieties. The assembly of calixarenes was examined in detail by means of UV, 1H NMR, ITC, DOSY, MS, and conductometry providing insight in the structure-stability relationship. The tetraureido calixarene derivative formed the most stable heterodimers with diacetate-calix[4]arenes featuring practically quantitative association upon mixing the two calixarene counterparts. The possibility of controlling the formation of the heterodimer by protonating the carboxylates, thereby hindering the interactions critical for capsule assembly, was investigated. Indeed, the reversibility of breaking and re-forming the heterodimer by addition of an acid and base to the solution containing urea- and carboxylate-derivative calix[4]arene was demonstrated using NMR spectroscopy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app