Journal Article
Video-Audio Media
Add like
Add dislike
Add to saved papers

Determining Surface Areas and Pore Volumes of Metal-Organic Frameworks.

The surface area and pore volume of a metal-organic framework (MOF) can provide insight into its structure and potential applications. Both parameters are commonly determined using the data from nitrogen sorption experiments; commercial instruments to perform these measurements are also widely available. These instruments will calculate structural parameters, but it is essential to understand how to select input data and when calculation methods apply to the sample MOF. This article outlines the use of the Brunauer-Emmett-Teller (BET) method and Barrett-Joyner-Halenda (BJH) method for the calculation of surface area and pore volume, respectively. Example calculations are performed on the representative MOF UiO-66. Although widely applicable to MOFs, sample materials and adsorption data must meet certain criteria for the calculated results to be considered accurate, in addition to proper sample preparation. The assumptions and limitations of these methods are also discussed, along with alternative and complementary techniques for the MOF pore space characterization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app