Add like
Add dislike
Add to saved papers

On the electrokinetic remediation of Pb-contaminated soil: A coupled electro-transport-reaction modelling study based on chemical reaction kinetics.

Chemosphere 2024 March 22
The accumulation of lead (Pb) in soil resulted from industrialization and urbanization poses a threat to human health and the ecosystem. This study proposes a mathematical model for Pb migration and transformation in soil porous media, aiming to guide the design of electrokinetic remediation schemes for Pb-contaminated soils. To improve the validity of the model, the chemical reactions considered in the model are all based on chemical reaction kinetics, which were usually overlooked for model simplification. The model quantitatively describes various physical and chemical processes of Pb at the soil-pore fluid interface and in the pore fluid, including diffusion, electromigration, electroosmosis, electrolytic water reaction, precipitation, adsorption/desorption, protonation/deprotonation reaction, and water self-ionization reaction. The numerical results show that the pH value is a key factor affecting the distribution of Pb in the soil and determining the removal efficiency of Pb. The effects of different enhancement methods on Pb concentration distribution and removal efficiency were evaluated with this model. It was found that placing a cation exchange membrane at the cathode boundary while using 0.01 M nitric acid as anode electrolyte can effectively improve Pb removal efficiency from 3.9% to 93.6%. The developed model can be used to guide the design of the enhanced electrokinetic remediation schemes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app