Add like
Add dislike
Add to saved papers

Prebiotics modulate the microbiota-gut-brain axis and ameliorate anxiety and depression-like behavior in HFD-fed mice.

Previous research has demonstrated that Prebiotics can influence the composition of the gut microbiota, consequently impacting mood regulation. This study aimed to assess the effects of Prebiotics, specifically Fructooligosaccharides (FOS) and Galactooligosaccharides (GOS) on neuroinflammation, depression, and anxiety-like behavior in a mouse model fed a high-fat diet (HFD). Initially, mice were divided into two groups: a control group on a standard diet (n = 15) and a group on an HFD for 18 weeks (n = 45). By the 13th week, the HFD group was further divided into experimental groups: Control (n = 15), HFD (n = 15), HFD receiving Prebiotics (n = 15), and HFD receiving Fluoxetine (n = 15). From the 13th week onward, the HFD + Prebiotics group received both the high-fat diet and a combination of FOS and GOS, while the HFD + Fluoxetine group received Fluoxetine in their drinking water. In the 18th week, all mice underwent tests to evaluate behavior, including the Tail Suspension Test (TST), Forced Swimming Test (FST), Sucrose Preference Test (SPT), and the Plus Maze Test (PMT), after which they were euthanized. Mice on the HFD exhibited increased body weight, abdominal size, blood glucose, triglyceride levels, cholesterol, insulin, HOMA index, and higher serum IL-1β. These obese mice also displayed an increased number of microglia and astrocytes, activation of the TLR4 pathway, and elevated levels of neuroinflammatory markers like TNF-α, IL-1β, and COX-2. Moreover, obese mice showed increased activation of the IDO pathway and decreased levels of NMDA receptors. Additionally, markers of neurogenesis and synaptic plasticity, such as PSD, SAP 102, CREB-p, and BDNF, were lower. Treatment with FOS and GOS reversed symptoms of depression and anxiety in mice subjected to HD. This improvement in behavior resulted from a reduction in dysbiosis with an increase in acetate-producing bacteria (B. acidifaciens and B. dorei) and intestinal permeability, leading to a decrease in chronic peripheral and central inflammation. Furthermore, the modulation of the gut-brain axis by FOS and GOS promoted elevated acetate and GPR43 levels in the brain and a reduction in the levels of pro-inflammatory cytokines, positively impacting signaling pathways of neuronal proliferation and survival in the hippocampus and prefrontal cortex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app