Add like
Add dislike
Add to saved papers

Hybrid protein microspheres and their responsive release behaviors and inhibitory effects on melanin synthesis.

Biomaterials Science 2024 March 23
In this study, the formation of protein microspheres through lysosomal enzyme-assisted biomineralized crystallization was demonstrated. Spherical micro-sized hybrid CaCO3 constructs were synthesized and characterized using field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and particle size analysis. Additionally, parameters such as the Brunauer-Emmett-Teller surface area and single-point total pore volume, and adsorption/desorption analysis were used to investigate the mesoporous properties, which are advantageous for lysosomal enzyme (LE) loading. A LE can be used as an organic template, not only as a morphological controller but also for entrapping LE during the crystallization pathway. The hybrid protein microspheres accommodated 2.3 mg of LE with a 57% encapsulation efficiency and 5.1 wt% loading. The peroxidase activity of the microspheres was calculated and found to be approximately 0.0238 mM-1 min-1 . pH-responsive release of the LE from CaCO3 was observed, suggesting potential biomedical and cosmetic applications in acidic environments. The hybrid LE microsphere treatment significantly alleviated melanin production in a dose-dependent manner and further downregulated the mRNA expression of MITF, tyrosinase, TYRP-1, and TYRP-2. These results indicate skin-whitening effects by inhibiting melanin without inducing cytotoxicity. The data provide the first evidence of the potential use of a LE for obtaining hybrid minerals and the effectiveness of biomineralization-based sustainable delivery of enzyme-based vehicles based on organelle-extract-assisted biomineralization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app