Add like
Add dislike
Add to saved papers

Acetyl-CoA synthetase 2 induces pyroptosis and inflammation of renal epithelial tubular cells in sepsis-induced acute kidney injury by upregulating the KLF5/NF-κB pathway.

BACKGROUND: Pyroptosis of the renal tubular epithelial cells (RTECs) and interstitial inflammation are central pathological characteristics of acute kidney injury (AKI). Pyroptosis acts as a pro-inflammatory form of programmed cell death and is mainly dependent on activation of the NLRP3 inflammasome. Previous studies revealed that acetyl-CoA synthetase 2 (ACSS2) promotes inflammation during metabolic stress suggesting that ACSS2 might regulate pyroptosis and inflammatory responses of RTECs in AKI.

METHODS AND RESULTS: The expression of ACSS2 was found to be significantly increased in the renal epithelial cells of mice with lipopolysaccharide (LPS)-induced AKI. Pharmacological and genetic strategies demonstrated that ACSS2 regulated NLRP3-mediated caspase-1 activation and pyroptosis through the stimulation of the KLF5/NF-κB pathway in RTECs. The deletion of ACSS2 attenuated renal tubular pathological injury and inflammatory cell infiltration in an LPS-induced mouse model, and ACSS2-deficient mice displayed impaired NLRP3 activation-mediated pyroptosis and decreased IL-1β production in response to the LPS challenge. In HK-2 cells, ACSS2 deficiency suppressed NLRP3-mediated caspase-1 activation and pyroptosis through the downregulation of the KLF5/NF-κB pathway. The KLF5 inhibitor ML264 suppressed NF-κB activity and NLRP3-mediated caspase-1 activation, thus protecting HK-2 cells from LPS-induced pyroptosis.

CONCLUSION: Our results suggested that ACSS2 regulates activation of the NLRP3 inflammasome and pyroptosis by inducing the KLF5/NF-κB pathway in RTECs. These results identified ACSS2 as a potential therapeutic target in AKI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app