Add like
Add dislike
Add to saved papers

Structure-guided evolution of cyclohexanone monooxygenase toward bulky omeprazole sulfide: substrate migration and stereoselectivity inversion.

Structure-guided engineering of a CHMO from Amycolatopsis methanolica (AmCHMO) was performed for asymmetric sulfoxidation activity and stereoselectivity toward omeprazole sulfide. Initially, combinatorial active-site saturation test (CASTing) and iteratively saturation mutagenesis (ISM) were performed on 5 residues at the "bottleneck" of substrate tunnel, and MT3 was successfully obtained with a specific activity of 46.19 U/g and R-stereoselectivity of 99% toward OPS. Then, 4 key mutations affecting the stereoselectivity were identified through multiple rounds of ISM on residues at the substrate binding pocket region, resulting MT8 with an inversed stereoselectivity from 99% (R) to 97% (S). MT8 has a greatly compromised specific activity of 0.08 U/g. By introducing additional beneficial mutations, MT11 was constructed with significantly increased specific activity of 2.29 U/g and stereoselectivity of 97% (S). Enlarged substrate tunnel is critical to the expanded substrate spectrum of AmCHMO, while reshaping of substrate binding pocket is important for stereoselective inversion.Based on MD simulation,  pre-reaction states of MT3-OPSproR, MT8-OPSproS, and MT11-OPSproS were calculated  to be 45.56%,17.94%, and 28.65% respectively, which further confirm the experimental data on activity and stereoselectivity. Our results pave the way for engineering distinct activity and stereoselectivity of BVMOs toward bulky prazole thioethers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app